
Customising DBMS APPLICATION INFO

Gerry Miller
Oracle DBA

gerry@millerandbowman.com

November 2, 2005

1 Introduction

DBMS APPLICATION INFO is one of the most useful yet least used of the Oracle sup-
plied PL/SQL packages. It is designed to allow application modules to be registered with
the database in order for developers and DBAs to monitor execution and performance. When
used in its original state the package can be quite valuable, but it is when its intended function-
ality is exploited by creating a custom version that it becomes a powerful debugging, tracing
and auditing tool. The solutions offered in this paper describe a straightforward method of im-
plementation that is reliable, robust and dynamic. In addition to outlining the basic functions
of the DBMS APPLICATION INFO package, the creation of a custom version is discussed,
highlighting possible problems and solving them. As a result, the package is demonstrated
to be a valuable tool that can be utilized at the most basic or complex level, depending on
the particular need at the time. The use of code in the custom version allows not only the
conventional functionality to be enhanced but also new functionality to be introduced. Per-
formance implications are discussed and comparisons made between the supplied package and
increasingly customised versions.

2 The DBMS APPLICATION INFO Package

2.1 Package Description

The DBMS APPLICATION INFO package has six procedures:

SET_MODULE
Parameters: Module_name IN VARCHAR2

Action_name IN VARCHAR2

This module is probably the most used in the package and is the most powerful when creating
a custom version. It accepts two parameters, MODULE NAME and ACTION NAME. The
SYS-owned package uses these values to update the MODULE and ACTION columns in the
V$SESSION and V$SQLAREA views.

1

Customising DBMS APPLICATION INFO Gerry Miller

SET_ACTION
Parameter: Action_name IN VARCHAR2

This module accepts only the ACTION NAME parameter, which is then passed on to the
VSESSIONandV SQLAREA packages. It is commonly used in the middle of a module when
the MODULE NAME has already been registered.

READ_MODULE
Parameters: Module_name OUT VARCHAR2

Action_name OUT VARCHAR2

The compliment of SET MODULE, this procedure populates two OUT parameters with the
current MODULE NAME and ACTION NAME for the session

SET_CLIENT_INFO
Parameter: Client_info IN VARCHAR2

This procedure is similar to SET MODULE and allows additional information about the client
application to be registered, although only the V$SESSION view is updated with its value.

READ_CLIENT_INFO
Parameter: Client_info OUT VARCHAR2

The compliment of SET CLIENT INFO, this procedure populates an OUT parameter with
the current CLIENT INFO value.

SET_SESSION_LONGOPS
Parameters: Rindex IN/OUT BINARY_INTEGER

Slno IN/OUT BINARY_INTEGER
Op_Name IN VARCHAR2 ,
Target IN BINARY_INTEGER ,
Context IN BINARY_INTEGER,
Sofar IN NUMBER,
Totalwork IN NUMBER,
Target_desc IN VARCHAR2,
Units IN VARCHAR2)

This procedure populates and updates the V$SESSION LONGOPS view.

It also has a constant,set session longops nohint, which has a value of -1 (minus one) and is
used in the initial call to SET SESSION LONGOPS.

This paper focuses only on the SET MODULE and SET ACTION modules.

UKOUG 2005 Page 2

Customising DBMS APPLICATION INFO Gerry Miller

2.2 Intended Usage

When database performance problems arise it is common practice to use the Oracle dynamic
performance views, trace files or both, to identify the offending sessions and to then drill
down to the source of the problem. At this point it is useful to know from which applica-
tion or system program module the SQL is being run, and this information can be provided
by DBMS APPLICATION INFO. The intended usage of the package, as documented in the
Oracle PL/SQL Packages and Types Reference [1], is to instrument application module us-
age and operation. This is effected by inserting the values supplied by the parameters of the
SET MODULE, SET ACTION into the V$SESSION and V$SQLAREA views and, if tracing
is enabled, writing them to the trace file, and is referred to in the documentation as ”regis-
tering” the application with the database. Calls to the SET CLIENT INFO Procedure Are
also recorded in the V$SESSION view, but not in the trace file. However, an additional use is
intended

"If you want to gather your own statistics based on module, you can
implement a wrapper around this package by writing a version of
this package in another schema that first gathers statistics and
then calls the SYS version of the package. The public synonym for
DBMS_APPLICATION_INFO can then be changed to point to the DBA’s
version of the package."

This is an important paragraph in the Oracle documentation as it allays any fears that Oracle
may not support such customisation.

2.3 Custom Package

As previously stated, the intended use of DBMS APPLICATION INFO is for developers/DBAs
to create their own version of it in order to enhance its capabilities, the custom version calling
the original. By creating a custom version of DBMS APPLICATION INFO code can be added
to provide functionality that would not necessarily be considered application-specific. The first
consideration when creating a custom version of DBMS APPLICATION INFO is that it must
have at least the same structure as the Oracle supplied version, that is, six procedures with
the same parameters as the original, as well as the constant, set session longops nohint. Each
procedure should at some point call its counterpart in the original in order to update the V$
views and trace files. The reason for this is that, even if it is not the intention to add extra
functionality to a procedure in the custom package, the application must be able to call that
procedure without problems. The basic package specification is therefore constructed thus:

CREATE OR REPLACE PACKAGE dbms_application_info
AS
PROCEDURE READ_CLIENT_INFO(CLIENT_INFO OUT VARCHAR2);
PROCEDURE READ_MODULE(MODULE_NAME OUT VARCHAR2,
ACTION_NAME OUT VARCHAR2);
PROCEDURE SET_ACTION(ACTION_NAME IN VARCHAR2);
PROCEDURE SET_CLIENT_INFO(CLIENT_INFO IN VARCHAR2);
PROCEDURE SET_MODULE(MODULE_NAME IN VARCHAR2,
ACTION_NAME IN VARCHAR2);
PROCEDURE SET_SESSION_LONGOPS(

UKOUG 2005 Page 3

Customising DBMS APPLICATION INFO Gerry Miller

RINDEX IN OUT BINARY_INTEGER,
SLNO IN OUT BINARY_INTEGER,
OP_NAME IN VARCHAR2,
TARGET IN BINARY_INTEGER,
CONTEXT IN BINARY_INTEGER,
SOFAR IN NUMBER,
TOTALWORK IN NUMBER,
TARGET_DESC IN VARCHAR2,
UNITS IN VARCHAR2);
set_session_longops_nohint constant pls_integer := -1;

END DBMS_APPLICATION_INFO;
/

with each module having a similar structure to:

PROCEDURE SET_MODULE(MODULE_NAME IN VARCHAR2,
ACTION_NAME IN VARCHAR2)
IS
BEGIN

SYS.DBMS_APPLICATION_INFO.SET_MODULE(MODULE_NAME,ACTION_NAME);
END;

This Basic custom package can then be enhanced to introduce additional functionality.

3 Enhancing Existing Functionality

3.1 Session Monitoring

In its most elementary form, as each call to the SET MODULE procedure is executed, the
MODULE and ACTION values are updated in the dynamic performance views, which is useful
information when monitoring session activity. This module can be called at various levels,
and is commonly called when a program first begins execution; examples of this can be seen
with programs like TOAD, SQL*Plus and Oracle Forms. However, calls can be made to
SET MODULE at any stage of a program, and if made in each program module - for example,
each procedure or function in a PL/SQL package - then program flow can be monitored. The
Oracle documentation suggests that:

"Your applications should set the name of the module and name of the action
automatically each time a user enters that module".

Unfortunately, this can result in misinformation being provided. For example, consider a
package, called DEMO PKG, which has two procedures, A and B, and one function, C. The
process flow of the package is as follows:

Procedure A calls Function C
Function C completes and returns to Procedure A

Procedure A calls Procedure B

UKOUG 2005 Page 4

Customising DBMS APPLICATION INFO Gerry Miller

Procedure B calls Function C
Function C completes and returns to Procedure B

Procedure B completes and returns to Procedure A

A call to DBMS APPLICATION INFO.SET MODULE is inserted at the beginning of each
procedure, for example:

DBMS_APPLICATION_INFO.SET_MODULE(’Procedure A’,NULL).

Consider further a scenario wherein, on return from Function C, Procedure B executes a horrific
query, taking forever to run and tying up resources. The session identifier (SID) of the offending
session is identified and the following query is executed:

SELECT module, action FROM V$SESSION WHERE sid=<sid>;

Resulting in:

MODULE ACTION
------------- ----------
Function C

This, of course, is incorrect. The call at the beginning of each PL/SQL module registers with
the database only when the module is entered, but not when control is returned to it from a
called module. As Function C was the last module registered with the database, the DBA will
look for the cause of the problem there, completely on the wrong track. It is therefore evident
that it is necessary not only to register each module at its entry point, but also at its exit
point. For example:

BEGIN
DBMS_APPLICATION_INFO.SET_MODULE(’Function C’,’Enter’)
.........
DBMS_APPLICATION_INFO.SET_MODULE(’Function C’,’Exit’)
END;

The query on V$SESSION now returns:

MODULE ACTION
------------ ----------
Function C Exit

It is now known that control has returned from Function C, but which procedure it has returned
to, A or B, is not evident. In order to be able to keep track of previous modules their names must
be recorded in a stack and code added to modify the calls to the Supplied package. Rather
than include such code in the application module, it can be added via a custom version of
DBMS APPLICATION INFO. In this example, variables are added to the package definition:

TYPE v_module IS table of VARCHAR2(48);
g_module v_module; --stack
g_level INTEGER; --stack pointer
g_action VARCHAR2(32);

UKOUG 2005 Page 5

Customising DBMS APPLICATION INFO Gerry Miller

The g module variable is a stack used to store the names of the previous modules and is
initialised in the main body of the DBMS APPLICATION INFO with the name of the current
module.

BEGIN
g_level := 1;
SYS.DBMS_APPLICATION_INFO.READ_MODULE

(g_module(g_level),g_action);
END dbms_application_info;

The SET MODULE procedure is then modified thus:

PROCEDURE SET_MODULE(
MODULE_NAME in VARCHAR2,
ACTION_NAME IN VARCHAR2)

IS
BEGIN

IF action_name = ’Enter’ THEN
g_level := g_level+1;
IF g_level > g_module.LAST THEN

g_module.extend;
END IF;
g_module(g_level) := module_name;
SYS.DBMS_APPLICATION_INFO.SET_MODULE

(MODULE_NAME,’Called by ’||g_module(g_level-1));
ELSIF action_name = ’Exit’ THEN

g_level := g_level-1;
SYS.DBMS_APPLICATION_INFO.SET_MODULE

(g_module(g_level),’Returned from ’||module_name);
ELSE

SYS.DBMS_APPLICATION_INFO.SET_MODULE
(MODULE_NAME,ACTION_NAME);

END IF;
END;

In any subsequent calls to SET MODULE or SET ACTION, if the value of action name is
neither ’Enter’ nor ’Exit’ then the call is simply passed on to the Supplied package. However,
if the value of action name is ’Enter’ then the module name is pushed onto the stack. When
the call is passed on to the Supplied package, the origin of the call is substituted for the original
action, e.g. ’Called by Procedure B’. If the value of action name is ’Exit’ then the module name
is popped off the stack and the parameter values that are passed on are modified to be more
informative: the module name is changed to the name of the module that is being resumed,
while the action name shows from where control is being passed.
Now the query from V$SESSION returns:

MODULE ACTION
------------- ----------
Procedure B Returned from Function C

UKOUG 2005 Page 6

Customising DBMS APPLICATION INFO Gerry Miller

The information returned is now accurate and program flow easier to follow.

There are still some shortcomings in this version. For example, if Function C is called from a
particular procedure more than once then it is not obvious from which module the call has been
made. However, notwithstanding the potential overheads involved, this could also be handled
in the custom SET MODULE procedure.

3.2 Session Tracing

If tracing is enabled then as each call to SET MODULE or SET ACTION is made, the module
and action values are written to the trace file. Pre-10g this takes the format:

APPNAME mod=’<module name>’ mh=0 act=<action name>’’ ah=0

while the introduction of 10g saw a change to the output format:

*** ACTION NAME:(<action name>) 2005-08-06 06:56:53.718
*** MODULE NAME:(<module name>) 2005-08-06 06:56:53.718

Although this change in format seems rather verbose for a trace file, the addition of the date
and time stamp is undoubtedly an advantage.
As the values are written to the trace file in chronological order, the extra code needed to keep
track of the program flow is now redundant and consequently so is the previously described
customised package. However, in addition to the default output to tracefiles, it is possible to
print custom messages to not only the trace file but also to the alert log, if desired, using the
KSDWRT procedure in the DBMS SYSTEM package. This Procedure accepts the parameters:

DEST: The destination of the message;
1= trace
2= alert log
3= both

TST: The text of the message

This has many advantages over the default messages provided by DBMS APPLICATION INFO,
not the least of which being that even if tracing is not enabled, a trace file is created and the
message written to it. This can be advantageous in a situation where it is necessary to monitor
a long-running job to identify how long each module is taking without having to worry about
filling up the trace filesystem or about the overhead of tracing that some perceive to be an
issue. By adding calls to KSDWRT that include the module name and a timestamp in the
custom package, a detailed account of the program flow can be obtained. If the updates to
the V$ views are not wanted then the call to the original package can be omitted. An ex-
ample of such a case would be an overnight batch job that would not be monitored during
runtime. If other users call the custom package then a condition can be added to restrict the
calls to KSDWRT, in order to prevent a trace file being created every time a call is made to
DBMS APPLICATION INFO:

PROCEDURE set_module(module_name in VARCHAR2,action_name IN VARCHAR2)
IS
BEGIN

UKOUG 2005 Page 7

Customising DBMS APPLICATION INFO Gerry Miller

IF v_trace_flag = ’Y’ THEN
IF action_name = ’Enter’ THEN

g_level := g_level+1;
g_module(g_level) := module_name;
SYS.DBMS_SYSTEM.KSDWRT

(1,Module_name||’ - ’||
to_char(sysdate,’DD-MON-YYYY HH24:MI:SS’));

ELSIF action_name = ’Exit’ THEN
g_level := g_level-1;
SYS.DBMS_SYSTEM.KSDWRT

(1,g_module(g_level)||’ - ’||
to_char(sysdate,’DD-MON-YYYY HH24:MI:SS’));

ELSE
SYS.DBMS_SYSTEM.KSDWRT

(1,module_name||’ - ’||action_name);
END IF;

ELSE
SYS.DBMS_APPLICATION_INFO.SET_MODULE(module_name,action_name);

END IF;
END;

If the v trace flag value were set then this module would result in trace file output similar to:

Procedure A - 02-OCT-2005 08:12:05
Function C - 02-OCT-2005 08:13:15
Procedure A - 02-OCT-2005 08:13:45
Procedure B - 02-OCT-2005 08:14:09
Function C - 02-OCT-2005 08:15:19
Procedure B - 02-OCT-2005 08:17:12
Procedure A - 02-OCT-2005 08:19:01

Depending on how much overhead can be tolerated, code can be added to provide whatever
output is desired. For example, simply adding ”rpad(’ ’,g level*3)” to the module name when
writing to the trace file indents each line according to the level of the nested procedures,
resulting in the much more readable:

Procedure A - 02-OCT-2005 08:12:05
Function C - 02-OCT-2005 08:13:15

Procedure A - 02-OCT-2005 08:13:45
Procedure B - 02-OCT-2005 08:14:09

Function C - 02-OCT-2005 08:15:19
Procedure B - 02-OCT-2005 08:17:12

Procedure A - 02-OCT-2005 08:19:01

Alternatively, if the number of calls to DBMS APPLICATION INFO is expected to be signif-
icant then formatting the output in comma-separated format will facilitate its loading into a
database table, making it easier to collate:

Procedure A,Enter,02-OCT-2005 08:12:05
Function C,Called from Procedure A,02-OCT-2005 08:13:15

UKOUG 2005 Page 8

Customising DBMS APPLICATION INFO Gerry Miller

Procedure A,Returned from Function C,02-OCT-2005 08:13:45
Procedure B,Called from Procedure A,02-OCT-2005 08:14:09
Function C,Called from Procedure B,02-OCT-2005 08:15:19
Procedure B,Returned from Function C,02-OCT-2005 08:17:12
Procedure A,Returned from Procedure B,02-OCT-2005 08:19:01

This output can be loaded into a table with the format:
Column name Datatype
Module VARCHAR2(48)
Action VARCHAR2(32)
Start Time DATE

From where queries can quickly be executed to quickly identify any long-running modules.

If execution time is not an issue then code can be added to process as well as format the trace
output. For example, instead of merely writing a timestamp to the tracefile, the elapsed time
of each module could be calculated and written out. Loaded into a database table, this data
would then be easily queried to identify long running modules.

4 Additional Functionality

As well as improving the the conventional functionality of the DBMS APPLICATION INFO
package, customisation can be used for a number of other tasks.

4.1 Executing DML

INSERT, UPDATE and DELETE statements can be incorporated in the custom package if
desired, for example, to log application information in the database. Apart from being more
resource intensive than writing information to trace files, there are other issues that must
be considered. If there are no commit statements issued in the application that is calling the
custom package and it crashes or performs a rollback operation, then all DML commands issued
during that transaction are lost. In addition, any query that includes a call to a function that
is calling the custom package will result in an error. For example:

SELECT demo_pkg.c FROM dual;

ORA-14551: cannot perform a DML operation inside a query

In Oracle Server release 9.2 and above both of these problems can be solved by adding
a PRAGMA AUTONOMOUS TRANSACTION in the declaration section and a COMMIT
statement at the end of the SET MODULE procedure:

PROCEDURE set_module(module_name in VARCHAR2,action_name IN VARCHAR2)
IS
PRAGMA AUTONOMOUS_TRANSACTION;
BEGIN

UKOUG 2005 Page 9

Customising DBMS APPLICATION INFO Gerry Miller

INSERT INTO some_table values (1);
commit;
SYS.DBMS_APPLICATION_INFO.SET_MODULE(module_name,action_name);

END;

In release prior to 9.2 the solution is more convoluted. If the session invoking the new
DBMS APPLICATION INFO package is running a distributed transaction it will fail with
the error:

ORA-00164 - autonomous transaction disallowed within distributed transactions

A distributed transaction includes one or more statements that, individually or as a group,
update data on two or more distinct nodes of a distributed database. There are a number of
solutions to this problem, including using the DBMS PIPE package or the Oracle Advanced
Queueing option to send the session module and action values to another session.

4.2 Conditional Tracing

Customisation can be used to enable tracing when a particular application module is called.
The most obvious way to do this would be simply:

PROCEDURE set_module(module_name in VARCHAR2,action_name IN VARCHAR2)
IS
BEGIN

IF module_name = ’Procedure B’ THEN
execute immediate ’alter session set events

’’10046 trace name context forever, level 12’’’;
END IF;

SYS.DBMS_APPLICATION_INFO.SET_MODULE(module_name,action_name);
END;

Oracle version 10g saw the introduction of the DBMS MONITOR package, which with one
command can enable tracing based not only on module but on a combination of other crite-
ria including action, client id and service name. However, DBMS APPLICATION INFO can
provide a level of granularity that DBMS MONITOR cannot. For example, tracing can be
enabled on every module except a specific one:

IF module_name != ’Procedure B’ THEN....

The author did exactly this when activating tracing for all modules during a project, and
encountering a bug that was purported to only occur when a specific application module had
tracing enabled. The offending module was excluded from tracing and the project continued.
Furthermore, retrieving information from, say, the V$SESSION view, can allow even more
selective operations. For example, it is quite common for a number of database users to
have the same database user ID, but be identifiable by their operating system user ID, which
is recorded in V$SESSION.OSUSER. This information can be used to restrict tracing - or
whatever else one may want to do - to a particular user. The operating system user id can be
retrieved from V$SESSION in the main body of the DBMS APPLICATION INFO package,
and then used to determine a course of action:

UKOUG 2005 Page 10

Customising DBMS APPLICATION INFO Gerry Miller

PROCEDURE set_module(module_name in VARCHAR2,action_name IN VARCHAR2)
IS
BEGIN

IF module_name = ’Procedure B’ THEN
IF g_osuser = ’fred’ THEN

execute immediate ’alter session set events
’’10046 trace name context forever, level 12’’’;

END IF;
END IF;
SYS.DBMS_APPLICATION_INFO.SET_MODULE(module_name,action_name);

END;

Selective operations such as this can easily be performed using information retrieved from both
system and application tables.

Another feature of the DBMS MONITOR package is that if tracing is enabled for a particular
module, the module is identified by a call to DBMS APPLICATION INFO, and if that module
calls another, then tracing is turned of during the execution of the subordinate module. This
may be the desired behaviour, but if the requirement is to trace all activity from the start
until the end of a module, then the code would have to be first examined to identify which
modules will be called - and which modules they in turn will call - and tracing enabled for
these modules also. Using DBMS APPLICATION INFO, one can enable tracing at the start
of a module and disable it at the end, ensuring that all activity is traced, including that in
sub-modules. Alternatively, the logic in the custom package can be modified to provide similar
behaviour to DBMS MONITOR.

4.3 Restricting Execution

It is sometimes necessary to restrict the execution of a particular application module to one
session in order to avoid contention. A method of doing this is demonstrated by Padhi [2], in
which the author outlines how to enforce this restriction by checking V$SESSION.MODULE
for versions of the current module. If any exist then a message is displayed to that effect
and the program terminates, otherwise SET MODULE is used to register the module and
the program continues. The code used to enforce this is contained in the application module,
which must be considered the correct approach if the module is designed to always be restricted
in this way. However, if such a restriction is required on a temporary basis, for example, if
it is necessary to provide a proof of concept, then the logic can be included in the custom
DBMS APPLICATION INFO package as follows.

PROCEDURE set_module(module_name IN VARCHAR2,action_name IN VARCHAR2)
IS
l_lockhandle VARCHAR2(128);
l_lockstatus NUMBER;
BEGIN

IF module_name = ’Procedure B’ THEN
dbms_lock.allocate_unique(module_name,l_lockhandle);
IF action_name = ’Enter’ THEN

l_lockstatus := dbms_lock.request(l_lockhandle,dbms_lock.x_mode,1);

UKOUG 2005 Page 11

Customising DBMS APPLICATION INFO Gerry Miller

IF l_lockstatus = 0 THEN
SYS.DBMS_APPLICATION_INFO.READ_MODULE(g_module_name,g_action_name);

dbms_output.put_line(’g_module=’||g_module_name||’,’||g_action_name);
SYS.DBMS_APPLICATION_INFO.SET_MODULE(module_name,action_name);

ELSE
RAISE_APPLICATION_ERROR(-20000,module_name||’ is already running.’);

END IF;
ELSIF action_name = ’Exit’ THEN

l_lockstatus := dbms_lock.release(l_lockhandle);
SYS.DBMS_APPLICATION_INFO.SET_MODULE(g_module_name,g_action_name);

ELSE
SYS.DBMS_APPLICATION_INFO.SET_MODULE(module_name,action_name);

END IF;
END IF;

END;

In this code, if the MODULE and or ACTION match specific criteria, a user lock is requested
and, if successfully obtained, the program continues. When the module is has completed, the
lock is released. During this time, if any other session tries to execute the same module then
it will exit with the error message: ”Module is already running.”. Alternatively, the second
program could request the lock in WAIT mode, which would see it wait until the first module
was complete before starting execution.
This principle can also be used to restrict trace enabling to one instance of a program. For
example, if a batch job runs a number of streams simultaneously and it is decided to enable
tracing during the run, it may be expedient to only trace one of the streams if restricted by
filesystem space:

PROCEDURE set_module(module_name in VARCHAR2,action_name IN VARCHAR2)
IS
l_count NUMBER;
BEGIN

IF module_name = ’Procedure B’ AND action_name = ’Enter’ THEN
SELECT count(*)
INTO l_count
FROM v$session
WHERE module = module_name
;
IF l_count = 0 THEN

execute immediate ’alter session set events
’’10046 trace name context forever, level 12’’’;

END IF;
SYS.DBMS_APPLICATION_INFO.SET_MODULE(module_name,action_name);

END IF;
END;

In this example, the first stream to start checks the V$SESSION view for existing instances of
this module. If none are found then tracing is activated and the module registered with the
database. When subsequent instances start they find that there is already one running and
they continue without tracing enabled.

UKOUG 2005 Page 12

Customising DBMS APPLICATION INFO Gerry Miller

4.4 Bug#4641478

The author encountered a problem when using DBMS APPLICATION INFO on a 10g database,
and this has now been logged as bug#4641478. The behaviour of the package in previous ver-
sions when running DEMO PKG with tracing enabled would be to write the following lines to
the trace file:

APPNAME mod=’Procedure A’ mh=0 act=’Enter ’ ah=0
APPNAME mod=’Function C’ mh=0 act=’Called from Procedure A’ ah=0
APPNAME mod=’Procedure A’ mh=0 act=’Returned from Function C’ ah=0
APPNAME mod=’Procedure B’ mh=0 act=’Called from Procedure A’ ah=0
APPNAME mod=’Function C’ mh=0 act=’Called from Procedure B’ ah=0
APPNAME mod=’Procedure B’ mh=0 act=’Returned from Function C’ ah=0
APPNAME mod=’Procedure A’ mh=0 act=’Returned from Procedure B’ ah=0

while in 10g the output would be:

*** ACTION NAME:(Returned from Procedure B) 2005-08-06 06:56:53.718
*** MODULE NAME:(Procedure A) 2005-08-06 06:56:53.718

which is the last call made by the program.

The bug occurs only in PL/SQL programs, and the V$ views are updated as expected. The
module and action information can be forced to be written to the trace file by preceding the call
with a SQL statement, a commit, or a call to one of the SYS.DBMS SYSTEM modules that
writes to the trace file. A workaround is to create a custom package, which includes a call to
DBMS SYSTEM.KSDWRT that writes a null string to the trace file, after having ascertained
that tracing is enabled.

PROCEDURE SET_MODULE(MODULE_NAME IN VARCHAR2,
ACTION_NAME IN VARCHAR2)

IS
l_trace_level NUMBER;
BEGIN

sys.dbms_system.read_ev(10046,l_trace_level);
IF l_trace_level > 0 THEN

sys.dbms_system.ksdwrt(1,’’);
END IF;
SYS.DBMS_APPLICATION_INFO.SET_MODULE(MODULE_NAME,ACTION_NAME);

END
;

This module checks the current trace level; a value greater than zero signifies that tracing is
enabled, and the call to SET MODULE is forced to the trace file.

UKOUG 2005 Page 13

Customising DBMS APPLICATION INFO Gerry Miller

5 Implementation

5.1 Access Methods

Although the Oracle documentation lists only one method of implementing the custom package,
namely redirecting the public synonym DBMS APPLICATION INFO, there are a number of
ways to do so depending on the needs of each application:

• Redirecting the public synonym:

This method ensures that every call to DBMS APPLICATION INFO is made to the custom
version.

• Creating a private synonym:

If only selected users need access to the custom version then a private synonym in those schemas
will ensure that all other users call the original package.

• Creating package with different names:

A library of custom versions can be accumulated with different purposes, with each one named
appropriately, for example:

DBMS_APPLICATION_INFO_TRACE
DBMS_APPLICATION_INFO_RETURN
DBMS_APPLICATION_INFO_RESTRICT

Public or private synonyms can then be directed to the package desired:

CREATE OR REPLACE SYNONYM dbms_application_info
FOR dbms_application_info_trace;

• Creating the package in another schema

If only one user needs access to the custom version then creating it in that user’s schema and
having no synonyms directed to it will ensure that no other users will call it.

The variety of options facilitates the implementation of multiple custom packages across one
application or database.

5.2 Caveats

As with all stored procedures and packages, care should be taken when recompiling the custom
package or redirecting its synonyms in an environment where it is in use. Any of the above
methods will result in library cache waits until any transaction currently using the package
releases it.

It should be noted that any calls or references to objects in another schema, for example
SYS.DBMS SYSTEM, would result in a compilation error unless the owner of the custom
package has explicit permissions on those objects.

UKOUG 2005 Page 14

Customising DBMS APPLICATION INFO Gerry Miller

5.3 Code Modification

In order to implement the comprehensive functionality enabled by customised versions of
DBMS APPLICATION INFO, a call to SET MODULE must be made at the beginning and
end of each program module. This task can be off-putting for developers, particularly in an ap-
plication where there are a significant number of modules. However, in programming languages
that have text-based source code, the modifications can easily be made programmatically, using
a scripting language like perl, awk or even PL/SQL.

6 Performance Implications

The effect on the performance of the application and database must be taken into consid-
eration. As each level of complexity is added to the custom package, resulting performance
degradation may not be acceptable and trade-offs may have to be made. The following tests
were performed on an Oracle 8.1.7.4 database running SunOS 5.8 on an 8 CPU machine.
DBMS APPLICATION INFO.SET MODULE was called 1048576 times, the elapsed time be-
ing recorded in centiseconds (csecs) using the DBMS UTILITY.GET TIME procedure before
and after each 1048576 calls, which were run 20 times serially. This procedure was performed
on:

• The Supplied package

• The Basic custom package

• The Return package (Custom package with code to identify calling modules)

• The Supplied package with tracing enabled

With the following results:

Package Avg per 1048576 calls (csecs) Avg per 1 call (csecs) Calls per second
Supplied 215 0.000205 487709
Basic 276 0.000263 379918
Return 709 0.000676 147895
Supplied + trace 1382 0.001317 76335

It can be seen that calls to the Supplied package are insignificant at around 2 microseconds
(µsecs) per call, which means that a program making half a million calls would have just over
one second added to its processing time. The implementation of the Basic custom package adds
an average 0.58 µsecs per call. The Return package introduces extra code to the programming
logic, albeit a different amount according to the conditions in the IF statement. It is interesting
to note that the addition of this few lines of code - none of which accesses the database - has more
impact than calling the original or basic modules. Once tracing is enabled, a comparatively
large increase is encountered, although each call is still only taking 13 µsecs. As an example

UKOUG 2005 Page 15

Customising DBMS APPLICATION INFO Gerry Miller

of the performance impact: if a call is made to DBMS APPLICATION INFO one hundred
times per second then a one-hour program will be extended by 0.738 of one second using the
Supplied package and 4.741 seconds using the Supplied package + trace.

The extremely low overhead of the Supplied package in particular demonstrates that calls
to DBMS APPLICATION INFO included in a program during development and testing can
be retained in the code when it is deployed in production without fear of adversely affecting
performance. Not only will this assist the DBA in monitoring the program at all times, but
will allow a custom version to be implemented at any time if necessary.

7 Summary

Customising the DBMS APPLICATION INFO package makes it a dynamic tool for developers
and DBAs. It can be used to provide meaningful information in real-time, produce formatted
output of custom content to tracefiles (even when Oracle tracing is not enabled), and condition-
ally restrict or allow particular operations. The multiple ways in which the custom package can
be implemented allows different functionality to be exploited in different schemas or combined
in the same package. Instrumentation is kept separate from the application code in the de-
velopment environment and the negligible performance impact of the Supplied package means
that the program can be promoted to production with virtually no negative effect. Once there,
it provides a platform from where troubleshooting measures can be introduced at any time
without modifying the application code.

References

[1] Oracle Corporation. PL/SQL Packages and Types Reference 10g Release 1 (10.1), Oracle
Database Documentation Library. Part Number B10802-01.

[2] Amar Kumar Padhi. Use oracle’s dbms application info to prevent routines from running
simultaneously, March 10 2004. http://www.databasejournal.com/features/oracle/
article.php/3321961.

UKOUG 2005 Page 16

